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Abstract--The heat transfer principle of power maximization in power plants with heat transfer irre- 
versibilities is extended to fluid flow. It is shown that when a stream flows between two pressure reservoirs 
(Pt > P2) across linear flow resistances, a piston delivers maximum power when the pressure difference 
across its faces is (PI-Pz)/2. The energy conversion efficiency at maximum power is q,~x = (1/2) 
(1 -Pz/PO, as an analog to the efficiency for maximum power in power plants, ~/m,~ = 1 -- (T2/T#/2. These 
results are gerLeralized to fluid flow with nonlinear relations of pressure drop vs flow rate. Depending on 
overall size constraints, the power delivery can be further maximized by balancing the flow resistances 
upstream and downstream of the piston. The paper concludes with applications to steady-flow shaft-power 
components. It is shown that turbines can be optimized for maximum power output by selecting the inlet 
or outlet pres~mre drop, or the flowrate. Compressors and pumps do not have a power input minimum 

with respect to pressure drop or flowrate. 

1. INTRODUCTION 

In this paper I consider the fundamental thermo- 
dynamic problem of how to extract maximum instan- 
taneous power from a fluid flow driven from a high 
pressure reservoir (Pt) to a low pressure reservoir 
(P2)- The corresponding maximum power problem of 
heat engines operating with thermal resistances 
between two temperature reservoirs has been treated 
in great detail in the literature. The work on 
maximum-power heat engines began with Novikov 
[1], Chambadal [2] and Curzon and Ahlborn [3], and 
generated a voluminous literature that was reviewed 
on several occasion:;, most recently in the book by 
Bejan [4]. The method of combining heat transfer with 
thermodynamics is more general, with a wide range 
of applications in addition to power plant opti- 
mization [5]. The method is known as thermodynamic 
optimization or entropy generation minimization. 

There is an important analogy between the irre- 
versibility of heat transfer across a finite temperature 
difference (thermal resistance) and the irreversibility 
of fluid flow across a finite pressure drop (fluid resist- 
ance). This analogy was stressed in ref. [5], pp. 35-38, 
and is responsible for the competition between heat 
transfer and fluid flow in the minimization of the 
entropy generation rate associated with convection 
heat transfer. The analogy was also exploited by Rad- 
cenco [6] in a series of component optimization appli- 
cations (turbines, compressors) that will be analyzed 
in Section 6. 

The objectives of the present paper are : 

(i) to extend to the field of fluid power conversion 
the thermodynamic optimization principles developed 
for thermal power conversion, 

(ii) to show the analogy between the fluid and ther- 
mal maximum power designs, 

(iii) to illustrate the physical meaning of the heat 
engine power maximum by using the purely mech- 
anical analog and language of the flow driven between 
two pressure reservoirs and 

(iv) to illustrate the practical meaning of the fluid 
power maximum by optimizing actual steady-flow 
shaft-work components such as turbines, compressors 
and pumps. 

2. EXTRACTION OF POWER FROM FLUID FLOW 
BETWEEN TWO PRESSURE RESERVOIRS 

Consider the piston and cylinder apparatus shown 
in Fig. 1. The piston moves with friction under the 
influence of the pressure difference P lc -P2c  main- 
tained across its two faces. The instantaneous power 
delivered by the piston to an external system is 

¢e = ( e l c - e 2 c ) . 4 V - . 4 f ~  V (1) 

where A, Af and V are the piston frontal area, the 
lateral (friction) area, and the instantaneous speed. 
The ratio 1~/6 accounts for Couette flow in the relative 
motion gap of thickness f, where/~ is the viscosity of 
the lubricant. The piston inertia is assumed negligible. 

The working fluid experiences a pressure drop 
(P1 - P~c) as it is admitted from the resevoir P~ to the 
chamber on the driven side of piston. Similarly, the 
fluid ejected from the chamber positioned on the driv- 
ing side of the piston experiences another pressure 
drop, (P2c-P:) .  By analogy with the simplest heat 
transfer model used in power maximization studies of 
thermal energy conversion (e.g. ref. [5], p. 146), we 
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NOMENCLATURE 

a, b dimensionless parameters, equation 
(32) 

A piston frontal area 
Af lateral, friction area 
Cp specific heat at constant pressure 
C constant 
D overall thickness 
Dl, D2 channel spacings, Fig. 3(b) 
L overall length 
L1, L2 duct lengths, Fig. 3(a) 

mass flow rate 
n exponent, equations (20) and (21) 
P~, P:  pressure reservoirs 
P ,o  P2c pressures across the piston 
rl, r2 flow resistances, equations (20) and 

(21) 
R~, Rz flow resistances, equations (2) and 

(3) 
Tj, T2 temperature reservoirs 
Tic, T2c temperatures across the reversible 

part of the heat engine, Fig. 2 
UA thermal conductance 

V 
v0 
G 

g~ 

X 
Y 

piston velocity 
piston velocity at zero power output 
mean fluid velocity in the downstream 
duct, Fig. 3(a) 
power output, equation (1) and Fig. 2 
relative channel spacing, equation (16) 
dimensionless pressure drop, equation 
(32). 

Greek symbols 
6 piston-cylinder gap thickness 
APf pressure difference due to piston- 

cylinder friction 
APt, AP2 pressure drops 
~/c compressor isentropic efficiency 
~/max efficiency at maximum power 
~/rev efficiency in the reversible limit 
~ t  ¢ turbine isentropic efficiency 
r/i~ .... second law efficiency at maximum 

power 
# viscosity of lubricant. 

assume that the pressure differences are proportional 
to the respective flow rates, which in turn are pro- 
portional to V: 

Pl --Plc = Rl V (2) 

P2c - P2 = R2 V. (3) 

In these expressions Rl and R2 are the two instan- 
taneous fluid resistances. The fluid is being assumed 
incompressible on both sides of the piston. The linear 
model (2, 3) is appropriate for laminar flow such as 
in capillary ducts for micromechanical energy con- 
verters. A model for higher Reynolds number flows is 
presented in Section 5. 

The resevoir pressures P~ and P2 are fixed, however, 
Plc and P2c depend on the piston speed, which is 
the only degree of freedom in the operation of the 
mechanical energy conversion device shown in Fig. 1. 
The optimal speed for maximum instantaneous power 

delivery can be obtained by eliminating Plc and V 
between equations (2, 3), substituting into equation 
(1), and solving d I/V/3P2c = 0. The result for the opti- 
mal downstream pressure is 

Pl + (1 + 2R1/R2)P2 -- APf 
P2c.opt = 2(l+R~/R2) (4) 

where APf = Af#/(A6) is the pressure drop due solely 
to piston-cylinder friction. The remaining parts of the 
maximum-power solution are obtained by sub- 
stituting equation (4) back into equations (1)-(3): 

P2 + (1 +2R2/R1)P~ +APf 
Plc.opt = 2(1 +R2/RI) (5) 

Pl --P2 - A P t  
V ° p t  - -  2(g, +R2) (6) 

l,~rmax = A ( P I  - -  e 2  - A P f )  2 (7) 
4(Rl +R2) 

P1 

V 

I PI( 
[ P2 

~f 
Fig. 1. Piston and cylinder apparatus for extracting mechanical power from the flow of a fluid between two 

pressure reservoirs. 
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TIrev = 1 - 1"2 
Tl 

(T2) 1/2 
T l m a x  = 1 - Tll 

Fig. 2. The analogy between the maximum power conditions for fluid power conversion vs thermal power 
conversion. 

One way to interpret the maximum power condition 
is to calculate the pressure difference across the piston, 
and compare it with the overall pressure difference : 

(P]c -- Pie)opt = 2 (Pl -- P2 + Aef). (8) 

We learn that in the limit of  negligible piston friction, 
the pressure difference across the piston must be 
exactly half of  the reservoir-to-reservoir pressure 
difference. There is symmetry between this result and 
the corresponding result for a power plant sandwiched 
between two thermal resistances (Fig. 2): pressure 
differences play the role of absolute temperature 
ratios. Furthermore.  1/2 appears as a factor in equa- 
tion (8) and as an exponent in the case of a thermal 
power plant optimized for maximum power. 

Another  way is 1:o compare the optimal instan- 
taneous speed (Vopt) with the piston speed in the limit 
of  zero power delivery (V0). The latter is obtained by 
combining l/r" = 0 with equations (1)-(3) 

P I - P2 - APf 
V0 -- (9) 

R1 +R2 

Equations (6) and (9) show that the piston speed at 
maximum power is exactly half of  the piston speed at 
zero power, Vopt = V0/2, regardless of whether piston 
friction is negligible. 

3. THE CONVERSION EFFICIENCY AT 
MAXIMUM POWER 

The work transfer rate received from the PI res- 
ervoir is P1A g. This quanti ty is analogous to the heat 
transfer rate Qt of the corresponding heat engine 
model, Fig. 2. In the reversible limit (APf = 0, R~ = 0, 
R 2 - - 0 ) ,  the mechanical power drawn from PIAV 
and delivered by the moving piston is only 
Wrov = (P~--P2)AV, because the port ion P2AV is 
being absorbed by the P2 reservoir. The power con- 
version efficiency in the reversible limit is 

W ~  P2 
- -  - -  1 ( 1 0 )  r/rev -- Pt A V P1 " 
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P1 

[--~ L r I 

(a) 

P2 q 
P1 ' 

u 1 • 1C 

P 2 c  

' P2 

(b) 

Fig. 3. Examples of overall size constraints : (a) fixed total length and pressure reservoirs on opposite sides 
of the piston ; (b) fixed total length and thickness, and pressure reservoirs on the same side of the piston. 

The symmetry between qrev and the Carnot efficiency 
of a heat engine (1 - T2/T~) is evident. 

The conversion efficiency of the device of Fig. 1 
under conditions of maximum power delivery is 

l~max 
(11) 

/'/max - -  P1A Vopt 

or, after using equations (6) and (7) 

1 (  P:  APf~ 
?]max : 2 1 e l  e l  J'  (12) 

The maximum-power efficiency is exactly half of the 
reversible-limit efficiency when piston friction is neg- 
ligible. This case is compared in Fig. 2 with the 
maximum-power efficiency of a heat engine, 
1 - ( T 2 / T 1 )  1/2. Again, as in the first line of the table of 
Fig. 2, the 1/2 factor of the formula for fluid power 
conversion becomes an exponent in the formula for 
thermal power conversion. In general, the effect of 
increasing piston friction is to shift the maximum 
power design toward lower q . . . .  ~ rma x and Fop t. 

4. OVERALL SIZE CONSTRAINTS 

Another issue that relates the two columns of Fig. 
2 concerns the overall size constraint that must be 
faced by the actual device. On the heat engine side of 
the figure, this issue has been studied extensively for 
the purpose of determining the optimal allocation of 
a finite heat transfer area (or thermal conductance) 
between the two heat exchangers [7, 8]. In the case of 
the general fluid power converter shown in Fig. 1, the 
impact of the overall size constraint depends on the 
shape (layout) of the system. 

To illustrate this point, consider the long and thin 
tube of length L shown in Fig. 3(a), and assume that 
APf = 0. The instantaneous position of the piston div- 
ides L into two sections, the driving fluid column L1, 

and the driven column L 2. The corresponding flow 
resistances of these two sections are 

Rj = CL1 and R 2 = C L  2 (13) 

where C is a Hagen-Poiseuille flow constant that 
depends on viscosity and tube diameter. The impor- 
tant observation is that C is the same on both sides of 
the piston, which means that 

R I + R  2 = CL (constant). (14) 

In conclusion, equations (6) and (7) show that Vopt 
and Wmax do not depend on the position occupied by 
the piston along L. In other words, in the device of 
Fig. 3(a) there is no optimum with respect to the way 
in which L is divided into L1 and L 2. The absence of 
such an optimum distinguishes the mechanical device 
of Fig. 3(a) from the heat engine model optimized in 
refs. [7] and [8]. 

In the second example, Fig. 3(b), we continue to 
assume that APf = 0. This time the two pressure res- 
ervoirs are positioned to the left of the piston, while 
the two fluid columns are oriented in counterflow. Let 
us assume that the overall size of the device is fixed, 
L x D, and that the fluid columns flow through narrow 
parallel-plate channels of spacing Dj and, respec- 
tively, D2. The overall thickness constraint 

D~ +DE = D (constant) (15) 

makes the relative thickness x of one channel the only 
degree of freedom 

DI = x D  D2 = ( 1 - - x ) D .  (16) 

Assuming that the piston is close to the end-turn 
region, and that the flow is of the Hagen-Poiseuille 
type in both channels, we have 

12/tL V (17) 
P1 - Pie = D~ 
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12/~L. 
e2c-e2 =-'-~-2 vz (18) 

where V2 is the mean velocity in the D2 channel. Mass 
conservation requires VDI = V2D2 ; after comparing 
equations (17) and (18) with equations (2) and (3) we 
conclude that the flow resistances are 

12#L 121tLD 1 
R~ = and R 2 -  (19) 

D~ D~ 

To further maximize ~Zma x of equation (7) we must 
minimize (RI + R2), which is equivalent to minimizing 
the function (D ? 2 + D I/D 3), or [x 2 + x/(1 - x)3]. The 
optimal relative spacing is Xopt = 0.454, which means 
that the downstream channel should be 20% wider 
than the upstream channel. The optimal spacings D~ 
and D2 are not equal because the geometry of Fig. 
3(b) is not symmetric with respect to the two channels 
(the piston is inside one of the channels, i.e. the D~ 
channel). 

5. NONLINEAR FLOW RESISTANCE RELATIONS 

The power maximization principles discussed until 
now also apply at higher Reynolds numbers, where 
the linear flow resistance model, equations (2) and (3) 
is replaced by nonlinear relations. A general model 
that relates the pressure drops to the instantaneous 
flowrate is 

P - P ] c  = rl V" (20) 

P::c - P 2  = r2 V" (21) 

where 1 ~ n ~ 2, and (rl, rz) are constant coefficients 
that depend on duct geometry and fluid properties. 
As in turbulent flow through a duct with rough walls, 
through an orifice [9], or through a porous medium 
[10], the n exponent increases as the Reynolds number 
increases. Clearly, the n = 1 limit represents the 
regime analyzed in Sections 2-4. 

Let us assume that at high Reynolds numbers the 
piston friction term is negligible on the right-hand 
side of equation (l). Combining equation (1) with 
equations (20) and (21) we find that the operation at 
maximum power is d.escribed by 

Pt(1 + 2r2/r~)-- P2[n- 2 + (n-- 1)rt/r2] 
P 1 c , o p t  = - -  2(1+r2/rl) 

(22) 

P~ +P2[n+  (n+ 1)r,/r2] 
P 2 c , o p t  = 2(1 q-rl/r2) (23) 

Vopt = (p, +P2[(n--2)+(n--2(r] + rz) 1)r'/rz]'~'/",] (24) 

(25) 

The maximum power output can be calculated 

u s i n g  ~/~'rma x : (Plc-e2c)optA Vopt. The efficiency at 
maximum power is given by 

l~ma x 1{ P 2 [  r l l}  
rlmax-p1AVopt- 2 1 - - ~ (  n + ( n - 1 ) ~  (26) 

which shows that ~]max decreases as n increases. Finally, 
equation (26) can be restated as a second law efficiency 
at maximum power, 

1E r v ( 1 /711 . . . .  1 - - ( n - - l )  l+r2jP~_p2 j. 

(27) 

In the n = 1 limit the second law efficiency is equal to 
1/2, which can also be seen by dividing equation (12) 
by equation (10) when APf = 0. The second law 
efficiency drops below 1/2 as n becomes greater 
than 1. 

6. APPLICATIONS 

The maximization of power extraction from fluid 
flow has potential applications in the optimization 
of power plants. This opportunity was pointed out 
recently by Radcenco [6], who analyzed the effect 
of finite inlet and outlet flow resistances in internal 
combustion engines, gas turbine power plants and 
reciprocating compressors and expanders, by 
assuming linear and nonlinear pressure drop relations 
and isentropic expansion and compression. In this 
section we illustrate these research opportunities by 
extending the simple model of Fig. 1 to steady-state 
shaft-work machines such as turbines, compressors 
and pumps. 

6.1. Turbine 
Consider the adiabatic steady flow turbine shown 

in Fig. 4. An ideal gas of flow rate rh expands from Pt 
to P2, as shown on the attached T-s diagram. The 
stream experiences the pressure drop APt as it is 
ducted and distributed to the first turbine stage. It 
then expands through the turbine stage (or sequence 
of stages), which has the isentropic efficiency r h. Note 
that to account for the nonisentropic expansion 
(~/t < 1) in Fig. 4 is equivalent to accounting for piston 
friction (AP0 in Fig. 1. The final pressure drop, AP2, 
is due to the discharge and ducting of the stream to 
the next component in the power plant (cooler, or 
condenser). We continue to assume that the relation 
between pressure drop and flow rate is nonlinear as in 
equations (20) and (21), 

AP1 = rim" (28) 

AP2 = r2rh". (29) 

The power output of the turbine 

- \ ~ j  _] (30) 
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/•PI - AP1 

P2 + AP2 

~ P2 

Fig. 4. Steady flow turbine with entrance and exit pressure drops. 

S 

can be expressed as a function of API by eliminating 
AP2 and rh between equations (28), (29) and (30). If 
we further assume that AP~ << P~ and AP2 << P2, the 
resulting expression is 

(Pl ' ] l i "y l i " (1-b-aby) (31) = ~,coT~ \ r ~ )  

where 

y=  a= + r ~ - )  b= . (32) 

Solving t3 Wlay = 0 we obtain the condition for oper- 
ation at maximum power 

APl,op t 1 -- b 
<< 1 ( 3 3 )  Yopt - P1 ab(1 +n) 

fPI~ li" n f l - b '~  l+li~ 
~'~/rm: x = ,tCp! 1 t ~ l  ) ~ t ~  ) ( 3 4 )  

r2  
m ° p t  \ r--~} , ~lAPl,opt . (35) 

It is instructive to compare the maximum power 
output (34) for finite rl and r2 with the power at the 
same flowrate (rhop¢) in the limit of zero pressure drops 
(r~ = r2 = 0), namely 

[J/'r, =r2 = 0 =~trhoptepTl[1-(e2x~ Rl%] \ ~ - ]  j .  (36) 

The ratio 

~¢~'rma x F/ 
- -  < 1 ( 3 7 )  

~"rrl = r2 = 0 l + n  

is equal to 1/2 when the pressure drop relations, equa- 
tions (28) and (29), are linear (n = 1). The 1/2 value 
reminds us of a similar result obtained in equation 
(12) for linear pressure drop relations. 

6.2. Compressor 
The analysis of the ideal-gas compressor with inlet 

and outlet pressure drops can be carried out similarly 
by using Fig. 5 and the pressure drop models (28) and 
(29). The isentropic efficiency of the compression stage 
(or sequence of stages) is t/c. The compressor power 
input 

-lmc r U e2÷aeA'% 1] w:_o , 1LtP,_  ) - 

can be reduced to 

1 ~ ( t > ' Y i °  ,i . . . .  

w: -- c <''1 Y l . - ,  +obyl 

(38) 

(39) 

where AP1 << P,, AP2 << P2 and (y, a, b) are given by 
equations (32). Note that this time b is greater than 1, 
and that Wc does not have a minimum with respect to 
y when y is positive. The absence of an optimal API, 
or an optimal pressure ratio across the 'inner com- 
partment' of the compressor model is analogous to 
the absence of an optimal temperature ratio across 
the inner (reversible) compartment of a refrigerator 
with warm and cold thermal resistances [11-13]. The 
common feature of compressors and refrigerators is 
that they require power inputs. In contrast to these, 
turbines and power plants are producers of power and 
have optimal pressure and temperature ratios. 

6.3. Pump 
Conclusions similar to those reached for the com- 

pressor are obtained in an analysis of a steady flow 
pump that operates on an incompressible fluid. When 
the finite intake and discharge flow resistances are 
taken into account, it is found that the pump power 
requirement increases monotonically with the pres- 
sure drops, or with the flow rate. 
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T1 

B 

~ 2 + AP2 

Fig. 5. Steady flow compressor with entrance and exit pressure drops. 

S 

6.4. Overall size conMraints 
The turbine power output  Wm,x of equation (34) 

may be maximized once more with respect to the way 
in which the flow resistances rl and r2 are balanced in 
a constraint dictated by overall size considerations. 
The same may apply to the compressor power input 
of equation (38). For  example, Radcenco [6] fixed the 
sum of the cross-sectional areas of the intake and 
discharge valves of a reciprocating compressor and 
found the optimal ratio of the two areas. 

7. CONCLUSIONS 

The main conclusion of the work presented in this 
paper is that the power extracted from a flow can 
be maximized by selecting the optimal flow rate, or 
optimal pressure drops upstream and downstream of 
the actual work-producing device, Fig. 1. When the 
piston works with negligible friction, the conversion 
efficiency at maximum power is (1-Pz /P1) /2 .  This 
result illustrates most succinctly the analogy between 
maximum power from fluid flow and maximum power 
from heat flow, Fig. 2. 

The practical implications of the fluid flow power 
maximum were explored in Sections 4-6. Depending 
on the geometric layout and size of the overall system, 
it may be possible to increase the power output  by 
balancing the inlet and outlet flow resistances. The 
applications of the maximum power principle to tur- 
bines, compressors and pumps (Section 6) and Rad- 

cenco's work [6] illustrate important  research oppor- 
tunities that deserve to be addressed in future studies. 
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